mathlib3 documentation

analysis.analytic.uniqueness

Uniqueness principle for analytic functions #

THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.

We show that two analytic functions which coincide around a point coincide on whole connected sets, in analytic_on.eq_on_of_preconnected_of_eventually_eq.

theorem analytic_on.eq_on_zero_of_preconnected_of_eventually_eq_zero_aux {๐•œ : Type u_1} [nontrivially_normed_field ๐•œ] {E : Type u_2} [normed_add_comm_group E] [normed_space ๐•œ E] {F : Type u_3} [normed_add_comm_group F] [normed_space ๐•œ F] [complete_space F] {f : E โ†’ F} {U : set E} (hf : analytic_on ๐•œ f U) (hU : is_preconnected U) {zโ‚€ : E} (hโ‚€ : zโ‚€ โˆˆ U) (hfzโ‚€ : f =แถ [nhds zโ‚€] 0) :
set.eq_on f 0 U

If an analytic function vanishes around a point, then it is uniformly zero along a connected set. Superseded by eq_on_zero_of_preconnected_of_locally_zero which does not assume completeness of the target space.

theorem analytic_on.eq_on_zero_of_preconnected_of_eventually_eq_zero {๐•œ : Type u_1} [nontrivially_normed_field ๐•œ] {E : Type u_2} [normed_add_comm_group E] [normed_space ๐•œ E] {F : Type u_3} [normed_add_comm_group F] [normed_space ๐•œ F] {f : E โ†’ F} {U : set E} (hf : analytic_on ๐•œ f U) (hU : is_preconnected U) {zโ‚€ : E} (hโ‚€ : zโ‚€ โˆˆ U) (hfzโ‚€ : f =แถ [nhds zโ‚€] 0) :
set.eq_on f 0 U

The identity principle for analytic functions: If an analytic function vanishes in a whole neighborhood of a point zโ‚€, then it is uniformly zero along a connected set. For a one-dimensional version assuming only that the function vanishes at some points arbitrarily close to zโ‚€, see eq_on_zero_of_preconnected_of_frequently_eq_zero.

theorem analytic_on.eq_on_of_preconnected_of_eventually_eq {๐•œ : Type u_1} [nontrivially_normed_field ๐•œ] {E : Type u_2} [normed_add_comm_group E] [normed_space ๐•œ E] {F : Type u_3} [normed_add_comm_group F] [normed_space ๐•œ F] {f g : E โ†’ F} {U : set E} (hf : analytic_on ๐•œ f U) (hg : analytic_on ๐•œ g U) (hU : is_preconnected U) {zโ‚€ : E} (hโ‚€ : zโ‚€ โˆˆ U) (hfg : f =แถ [nhds zโ‚€] g) :
set.eq_on f g U

The identity principle for analytic functions: If two analytic functions coincide in a whole neighborhood of a point zโ‚€, then they coincide globally along a connected set. For a one-dimensional version assuming only that the functions coincide at some points arbitrarily close to zโ‚€, see eq_on_of_preconnected_of_frequently_eq.

theorem analytic_on.eq_of_eventually_eq {๐•œ : Type u_1} [nontrivially_normed_field ๐•œ] {E : Type u_2} [normed_add_comm_group E] [normed_space ๐•œ E] {F : Type u_3} [normed_add_comm_group F] [normed_space ๐•œ F] {f g : E โ†’ F} [preconnected_space E] (hf : analytic_on ๐•œ f set.univ) (hg : analytic_on ๐•œ g set.univ) {zโ‚€ : E} (hfg : f =แถ [nhds zโ‚€] g) :
f = g

The identity principle for analytic functions: If two analytic functions on a normed space coincide in a neighborhood of a point zโ‚€, then they coincide everywhere. For a one-dimensional version assuming only that the functions coincide at some points arbitrarily close to zโ‚€, see eq_of_frequently_eq.