mathlib3 documentation

analysis.convex.stone_separation

Stone's separation theorem #

THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.

This file prove Stone's separation theorem. This tells us that any two disjoint convex sets can be separated by a convex set whose complement is also convex.

In locally convex real topological vector spaces, the Hahn-Banach separation theorems provide stronger statements: one may find a separating hyperplane, instead of merely a convex set whose complement is convex.

theorem not_disjoint_segment_convex_hull_triple {๐•œ : Type u_1} {E : Type u_2} [linear_ordered_field ๐•œ] [add_comm_group E] [module ๐•œ E] {p q u v x y z : E} (hz : z โˆˆ segment ๐•œ x y) (hu : u โˆˆ segment ๐•œ x p) (hv : v โˆˆ segment ๐•œ y q) :
ยฌdisjoint (segment ๐•œ u v) (โ‡‘(convex_hull ๐•œ) {p, q, z})

In a tetrahedron with vertices x, y, p, q, any segment [u, v] joining the opposite edges [x, p] and [y, q] passes through any triangle of vertices p, q, z where z โˆˆ [x, y].

theorem exists_convex_convex_compl_subset {๐•œ : Type u_1} {E : Type u_2} [linear_ordered_field ๐•œ] [add_comm_group E] [module ๐•œ E] {s t : set E} (hs : convex ๐•œ s) (ht : convex ๐•œ t) (hst : disjoint s t) :

Stone's Separation Theorem