mathlib3 documentation

analysis.convex.proj_Icc

Convexity of extension from intervals #

This file proves that constantly extending monotone/antitone functions preserves their convexity.

TODO #

We could deduplicate the proofs if we had a typeclass stating that segment ๐•œ x y = [x -[๐•œ] y] as ๐•œแต’แตˆ respects it if ๐•œ does, while ๐•œแต’แตˆ isn't a linear_ordered_field if ๐•œ is.

@[protected]
theorem convex.Ici_extend {๐•œ : Type u_1} [linear_ordered_field ๐•œ] {s : set ๐•œ} {z : ๐•œ} (hf : convex ๐•œ s) :
convex ๐•œ {x : ๐•œ | set.Ici_extend ((set.Ici z).restrict (ฮป (_x : ๐•œ), _x โˆˆ s)) x}

A convex set extended towards minus infinity is convex.

@[protected]
theorem convex.Iic_extend {๐•œ : Type u_1} [linear_ordered_field ๐•œ] {s : set ๐•œ} {z : ๐•œ} (hf : convex ๐•œ s) :
convex ๐•œ {x : ๐•œ | set.Iic_extend ((set.Iic z).restrict (ฮป (_x : ๐•œ), _x โˆˆ s)) x}

A convex set extended towards infinity is convex.

@[protected]
theorem convex_on.Ici_extend {๐•œ : Type u_1} {ฮฒ : Type u_2} [linear_ordered_field ๐•œ] [linear_ordered_add_comm_monoid ฮฒ] [has_smul ๐•œ ฮฒ] {s : set ๐•œ} {f : ๐•œ โ†’ ฮฒ} {z : ๐•œ} (hf : convex_on ๐•œ s f) (hf' : monotone_on f s) :
convex_on ๐•œ {x : ๐•œ | set.Ici_extend ((set.Ici z).restrict (ฮป (_x : ๐•œ), _x โˆˆ s)) x} (set.Ici_extend ((set.Ici z).restrict f))

A convex monotone function extended constantly towards minus infinity is convex.

@[protected]
theorem convex_on.Iic_extend {๐•œ : Type u_1} {ฮฒ : Type u_2} [linear_ordered_field ๐•œ] [linear_ordered_add_comm_monoid ฮฒ] [has_smul ๐•œ ฮฒ] {s : set ๐•œ} {f : ๐•œ โ†’ ฮฒ} {z : ๐•œ} (hf : convex_on ๐•œ s f) (hf' : antitone_on f s) :
convex_on ๐•œ {x : ๐•œ | set.Iic_extend ((set.Iic z).restrict (ฮป (_x : ๐•œ), _x โˆˆ s)) x} (set.Iic_extend ((set.Iic z).restrict f))

A convex antitone function extended constantly towards infinity is convex.

@[protected]
theorem concave_on.Ici_extend {๐•œ : Type u_1} {ฮฒ : Type u_2} [linear_ordered_field ๐•œ] [linear_ordered_add_comm_monoid ฮฒ] [has_smul ๐•œ ฮฒ] {s : set ๐•œ} {f : ๐•œ โ†’ ฮฒ} {z : ๐•œ} (hf : concave_on ๐•œ s f) (hf' : antitone_on f s) :
concave_on ๐•œ {x : ๐•œ | set.Ici_extend ((set.Ici z).restrict (ฮป (_x : ๐•œ), _x โˆˆ s)) x} (set.Ici_extend ((set.Ici z).restrict f))

A concave antitone function extended constantly minus towards infinity is concave.

@[protected]
theorem concave_on.Iic_extend {๐•œ : Type u_1} {ฮฒ : Type u_2} [linear_ordered_field ๐•œ] [linear_ordered_add_comm_monoid ฮฒ] [has_smul ๐•œ ฮฒ] {s : set ๐•œ} {f : ๐•œ โ†’ ฮฒ} {z : ๐•œ} (hf : concave_on ๐•œ s f) (hf' : monotone_on f s) :
concave_on ๐•œ {x : ๐•œ | set.Iic_extend ((set.Iic z).restrict (ฮป (_x : ๐•œ), _x โˆˆ s)) x} (set.Iic_extend ((set.Iic z).restrict f))

A concave monotone function extended constantly towards infinity is concave.

@[protected]
theorem convex_on.Ici_extend_of_monotone {๐•œ : Type u_1} {ฮฒ : Type u_2} [linear_ordered_field ๐•œ] [linear_ordered_add_comm_monoid ฮฒ] [has_smul ๐•œ ฮฒ] {f : ๐•œ โ†’ ฮฒ} {z : ๐•œ} (hf : convex_on ๐•œ set.univ f) (hf' : monotone f) :

A convex monotone function extended constantly towards minus infinity is convex.

@[protected]
theorem convex_on.Iic_extend_of_antitone {๐•œ : Type u_1} {ฮฒ : Type u_2} [linear_ordered_field ๐•œ] [linear_ordered_add_comm_monoid ฮฒ] [has_smul ๐•œ ฮฒ] {f : ๐•œ โ†’ ฮฒ} {z : ๐•œ} (hf : convex_on ๐•œ set.univ f) (hf' : antitone f) :

A convex antitone function extended constantly towards infinity is convex.

@[protected]
theorem concave_on.Ici_extend_of_antitone {๐•œ : Type u_1} {ฮฒ : Type u_2} [linear_ordered_field ๐•œ] [linear_ordered_add_comm_monoid ฮฒ] [has_smul ๐•œ ฮฒ] {f : ๐•œ โ†’ ฮฒ} {z : ๐•œ} (hf : concave_on ๐•œ set.univ f) (hf' : antitone f) :

A concave antitone function extended constantly minus towards infinity is concave.

@[protected]
theorem concave_on.Iic_extend_of_monotone {๐•œ : Type u_1} {ฮฒ : Type u_2} [linear_ordered_field ๐•œ] [linear_ordered_add_comm_monoid ฮฒ] [has_smul ๐•œ ฮฒ] {f : ๐•œ โ†’ ฮฒ} {z : ๐•œ} (hf : concave_on ๐•œ set.univ f) (hf' : monotone f) :

A concave monotone function extended constantly towards infinity is concave.