mathlib3 documentation

analysis.special_functions.polynomials

Limits related to polynomial and rational functions #

THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.

This file proves basic facts about limits of polynomial and rationals functions. The main result is eval_is_equivalent_at_top_eval_lead, which states that for any polynomial P of degree n with leading coefficient a, the corresponding polynomial function is equivalent to a * x^n as x goes to +โˆž.

We can then use this result to prove various limits for polynomial and rational functions, depending on the degrees and leading coefficients of the considered polynomials.

theorem polynomial.eventually_no_roots {๐•œ : Type u_1} [normed_linear_ordered_field ๐•œ] (P : polynomial ๐•œ) (hP : P โ‰  0) :
theorem polynomial.is_equivalent_at_top_lead {๐•œ : Type u_1} [normed_linear_ordered_field ๐•œ] (P : polynomial ๐•œ) [order_topology ๐•œ] :
asymptotics.is_equivalent filter.at_top (ฮป (x : ๐•œ), polynomial.eval x P) (ฮป (x : ๐•œ), P.leading_coeff * x ^ P.nat_degree)
theorem polynomial.tendsto_at_top_of_leading_coeff_nonneg {๐•œ : Type u_1} [normed_linear_ordered_field ๐•œ] (P : polynomial ๐•œ) [order_topology ๐•œ] (hdeg : 0 < P.degree) (hnng : 0 โ‰ค P.leading_coeff) :
theorem polynomial.tendsto_at_bot_of_leading_coeff_nonpos {๐•œ : Type u_1} [normed_linear_ordered_field ๐•œ] (P : polynomial ๐•œ) [order_topology ๐•œ] (hdeg : 0 < P.degree) (hnps : P.leading_coeff โ‰ค 0) :
theorem polynomial.abs_tendsto_at_top {๐•œ : Type u_1} [normed_linear_ordered_field ๐•œ] (P : polynomial ๐•œ) [order_topology ๐•œ] (hdeg : 0 < P.degree) :
theorem polynomial.abs_tendsto_at_top_iff {๐•œ : Type u_1} [normed_linear_ordered_field ๐•œ] (P : polynomial ๐•œ) [order_topology ๐•œ] :
theorem polynomial.tendsto_nhds_iff {๐•œ : Type u_1} [normed_linear_ordered_field ๐•œ] (P : polynomial ๐•œ) [order_topology ๐•œ] {c : ๐•œ} :
theorem polynomial.is_equivalent_at_top_div {๐•œ : Type u_1} [normed_linear_ordered_field ๐•œ] (P Q : polynomial ๐•œ) [order_topology ๐•œ] :
theorem polynomial.div_tendsto_zero_of_degree_lt {๐•œ : Type u_1} [normed_linear_ordered_field ๐•œ] (P Q : polynomial ๐•œ) [order_topology ๐•œ] (hdeg : P.degree < Q.degree) :
filter.tendsto (ฮป (x : ๐•œ), polynomial.eval x P / polynomial.eval x Q) filter.at_top (nhds 0)
theorem polynomial.div_tendsto_zero_iff_degree_lt {๐•œ : Type u_1} [normed_linear_ordered_field ๐•œ] (P Q : polynomial ๐•œ) [order_topology ๐•œ] (hQ : Q โ‰  0) :
theorem polynomial.div_tendsto_leading_coeff_div_of_degree_eq {๐•œ : Type u_1} [normed_linear_ordered_field ๐•œ] (P Q : polynomial ๐•œ) [order_topology ๐•œ] (hdeg : P.degree = Q.degree) :
theorem polynomial.div_tendsto_at_top_of_degree_gt' {๐•œ : Type u_1} [normed_linear_ordered_field ๐•œ] (P Q : polynomial ๐•œ) [order_topology ๐•œ] (hdeg : Q.degree < P.degree) (hpos : 0 < P.leading_coeff / Q.leading_coeff) :
theorem polynomial.div_tendsto_at_top_of_degree_gt {๐•œ : Type u_1} [normed_linear_ordered_field ๐•œ] (P Q : polynomial ๐•œ) [order_topology ๐•œ] (hdeg : Q.degree < P.degree) (hQ : Q โ‰  0) (hnng : 0 โ‰ค P.leading_coeff / Q.leading_coeff) :
theorem polynomial.div_tendsto_at_bot_of_degree_gt' {๐•œ : Type u_1} [normed_linear_ordered_field ๐•œ] (P Q : polynomial ๐•œ) [order_topology ๐•œ] (hdeg : Q.degree < P.degree) (hneg : P.leading_coeff / Q.leading_coeff < 0) :
theorem polynomial.div_tendsto_at_bot_of_degree_gt {๐•œ : Type u_1} [normed_linear_ordered_field ๐•œ] (P Q : polynomial ๐•œ) [order_topology ๐•œ] (hdeg : Q.degree < P.degree) (hQ : Q โ‰  0) (hnps : P.leading_coeff / Q.leading_coeff โ‰ค 0) :
theorem polynomial.abs_div_tendsto_at_top_of_degree_gt {๐•œ : Type u_1} [normed_linear_ordered_field ๐•œ] (P Q : polynomial ๐•œ) [order_topology ๐•œ] (hdeg : Q.degree < P.degree) (hQ : Q โ‰  0) :
theorem polynomial.is_O_of_degree_le {๐•œ : Type u_1} [normed_linear_ordered_field ๐•œ] (P Q : polynomial ๐•œ) [order_topology ๐•œ] (h : P.degree โ‰ค Q.degree) :
(ฮป (x : ๐•œ), polynomial.eval x P) =O[filter.at_top] ฮป (x : ๐•œ), polynomial.eval x Q